Many mathematical optimization algorithms fail to sufficiently explore the solution space of high-dimensional nonlinear optimization problems due to the curse of dimensionality. This paper proposes generative models as a complement to optimization algorithms to improve performance in problems with high dimensionality. To demonstrate this method, a conditional generative adversarial network (C-GAN) is used to augment the solutions produced by a genetic algorithm (GA) for a 311-dimensional nonconvex multi-objective mixed-integer nonlinear optimization. The C-GAN, composed of two networks with three fully connected hidden layers, is trained on solutions generated by GA, and then given sets of desired labels (i.e., objective function values), generates complementary solutions corresponding to those labels. Six experiments are conducted to evaluate the capabilities of the proposed method. The generated complementary solutions are compared to the original solutions in terms of optimality and diversity. The generative model generates solutions with objective functions up to 100% better, and with hypervolumes up to 100% higher, than the original solutions. These findings show that a C-GAN with even a simple training approach and architecture can, with a much shorter runtime, highly improve the diversity and optimality of solutions found by an optimization algorithm for a high-dimensional nonlinear optimization problem. [Link to GitHub repository: https://github.com/PouyaREZ/GAN_GA]
翻译:许多数学优化算法未能充分探索高维非线性优化问题的解决方案空间。 本文提出基因模型, 作为对优化算法的补充, 以改善高维性问题中的性能。 为了展示这一方法, 使用一个有条件的基因化对抗网络( C- GAN) 来扩大由311 维非康维克斯多目标混合英特格非线性优化的遗传算法( GA) 产生的解决方案。 C- GAN 由两个网络组成, 有三个完全连接的隐藏层组成, 接受关于GA产生的解决方案的培训, 然后提供一套理想的标签( 即, 客观功能值), 产生与这些标签相应的补充性解决方案。 为了评估拟议方法的能力, 进行了六次实验。 生成的补充性解决方案在最佳性和多样性方面与最初的解决方案相比较。 基因化模型产生比最初的解决方案高出100%的目标功能, 高至100 %。 这些结果显示, C- GANAN 的简单培训方法和结构可以比这些标签( 客观程度) 更短得多地改进 Gi- ASimal ASimal 问题。 [ 最优化的Gialalal_ 问题, 最短的Gi- grial- hromainalmainal