The popularity of deep convolutional autoencoders (CAEs) has engendered new and effective reduced-order models (ROMs) for the simulation of large-scale dynamical systems. Despite this, it is still unknown whether deep CAEs provide superior performance over established linear techniques or other network-based methods in all modeling scenarios. To elucidate this, the effect of autoencoder architecture on its associated ROM is studied through the comparison of deep CAEs against two alternatives: a simple fully connected autoencoder, and a novel graph convolutional autoencoder. Through benchmark experiments, it is shown that the superior autoencoder architecture for a given ROM application is highly dependent on the size of the latent space and the structure of the snapshot data, with the proposed architecture demonstrating benefits on data with irregular connectivity when the latent space is sufficiently large.
翻译:深革命自动电解码器(CAE)的普及为模拟大规模动态系统创造了新的、有效的减序模型(ROMs),尽管如此,仍然不清楚深大气层自动电解码器是否在所有建模情景中比既定线性技术或其他基于网络的方法具有优异性能。为了阐明这一点,通过对深大气层自动电解码器结构对其相关ROM的影响进行比较,研究该结构对其相关ROM的影响时采用了两种替代方法:一个简单、完全连接的自动电解码器,和一个新颖的图形相形自动电解码器。通过基准实验,可以发现,一个特定ROM应用的高级自动电解码器结构高度取决于潜在空间的大小和快照数据的结构,而拟议的结构则显示在潜在空间足够大的情况下,数据具有不规则连接性的好处。