We propose a new formulation of the maximum score estimator that uses compositions of rectified linear unit (ReLU) functions, instead of indicator functions as in Manski (1975,1985), to encode the sign alignment restrictions. Since the ReLU function is Lipschitz, our new ReLU-based maximum score criterion function is substantially easier to optimize using standard gradient-based optimization pacakges. We also show that our ReLU-based maximum score (RMS) estimator can be generalized to an umbrella framework defined by multi-index single-crossing (MISC) conditions, while the original maximum score estimator cannot be applied. We establish the $n^{-s/(2s+1)}$ convergence rate and asymptotic normality for the RMS estimator under order-$s$ Holder smoothness. In addition, we propose an alternative estimator using a further reformulation of RMS as a special layer in a deep neural network (DNN) architecture, which allows the estimation procedure to be implemented via state-of-the-art software and hardware for DNN.
翻译:我们提出了一种新的最大得分估计器构建方法,该方法使用修正线性单元(ReLU)函数的组合,而非如Manski(1975,1985)所采用的指示函数,来编码符号对齐约束。由于ReLU函数具有Lipschitz连续性,我们新提出的基于ReLU的最大得分准则函数显著更易于使用标准基于梯度的优化工具包进行优化。我们还证明,基于ReLU的最大得分(RMS)估计器可以推广至由多指标单交叉(MISC)条件定义的统一框架中,而原始的最大得分估计器则无法适用。在阶数为s的Hölder光滑性假设下,我们建立了RMS估计器的$n^{-s/(2s+1)}$收敛速率及渐近正态性。此外,我们提出了一种替代估计器,通过将RMS进一步重构为深度神经网络(DNN)架构中的特殊层,使得估计过程能够借助最先进的DNN软件与硬件实现。