The local intrinsic dimension (LID) of data is a fundamental quantity in signal processing and learning theory, but quantifying the LID of high-dimensional, complex data has been a historically challenging task. Recent works have discovered that diffusion models capture the LID of data through the spectra of their score estimates and through the rate of change of their density estimates under various noise perturbations. While these methods can accurately quantify LID, they require either many forward passes of the diffusion model or use of gradient computation, limiting their applicability in compute- and memory-constrained scenarios. We show that the LID is a lower bound on the denoising score matching loss, motivating use of the denoising score matching loss as a LID estimator. Moreover, we show that the equivalent implicit score matching loss also approximates LID via the normal dimension and is closely related to a recent LID estimator, FLIPD. Our experiments on a manifold benchmark and with Stable Diffusion 3.5 indicate that the denoising score matching loss is a highly competitive and scalable LID estimator, achieving superior accuracy and memory footprint under increasing problem size and quantization level.


翻译:数据的局部本征维度(LID)是信号处理与学习理论中的一个基本量,但量化高维复杂数据的LID历来是一项具有挑战性的任务。近期研究发现,扩散模型通过其得分估计的谱以及在不同噪声扰动下密度估计的变化率来捕捉数据的LID。尽管这些方法能够准确量化LID,但它们需要多次扩散模型的前向传播或使用梯度计算,限制了其在计算和内存受限场景下的适用性。我们证明LID是去噪得分匹配损失的下界,这促使我们将去噪得分匹配损失用作LID估计器。此外,我们表明等效的隐式得分匹配损失也通过法向维度近似LID,并与近期提出的LID估计器FLIPD密切相关。我们在流形基准测试和Stable Diffusion 3.5上的实验表明,去噪得分匹配损失是一种极具竞争力且可扩展的LID估计器,在问题规模和量化级别增加时,实现了更优的精度和内存占用。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员