Systematic testing of autonomous vehicles operating in complex real-world scenarios is a difficult and expensive problem. We present Paracosm, a reactive language for writing test scenarios for autonomous driving systems. Paracosm allows users to programmatically describe complex driving situations with specific visual features, e.g., road layout in an urban environment, as well as reactive temporal behaviors of cars and pedestrians. Paracosm programs are executed on top of a game engine that provides realistic physics simulation and visual rendering. The infrastructure allows systematic exploration of the state space, both for visual features (lighting, shadows, fog) and for reactive interactions with the environment (pedestrians, other traffic). We define a notion of test coverage for Paracosm configurations based on combinatorial testing and low dispersion sequences. Paracosm comes with an automatic test case generator that uses random sampling for discrete parameters and deterministic quasi-Monte Carlo generation for continuous parameters. Through an empirical evaluation, we demonstrate the modeling and testing capabilities of Paracosm on a suite of autonomous driving systems implemented using deep neural networks developed in research and education. We show how Paracosm can expose incorrect behaviors or degraded performance.
翻译:对在复杂现实情景下运行的自主车辆进行系统测试是一个困难和昂贵的问题。我们提出Paracosm,这是一种用于为自主驾驶系统编写测试假想的被动语言。Paracosm允许用户用方案描述具有具体视觉特征的复杂驾驶情况,例如城市环境中的道路布局,以及汽车和行人的反应时间行为。Paracosm程序在提供现实物理模拟和视觉显示的游戏引擎之上实施。基础设施允许系统地探索国家空间,既包括视觉特征(亮光、阴影、雾),也包括与环境的被动互动(食人、其他交通)。我们根据组合测试和低分散序列界定了Paracosm配置的测试范围概念。Paracosm使用自动测试案例生成器,对离散参数进行随机抽样,对连续参数进行确定性准蒙特卡洛生成。通过经验评估,我们展示了Paracosm在利用研究和教育开发的深神经网络实施的自主驾驶系统(深层神经网络)的模型和测试能力。我们展示了Paracom如何退化或不正确的行为。