In this document, we introduce PyCSP$3$, a Python library that allows us to write models of combinatorial constrained problems in a declarative manner. Currently, with PyCSP$3$, you can write models of constraint satisfaction and optimization problems. More specifically, you can build CSP (Constraint Satisfaction Problem) and COP (Constraint Optimization Problem) models. Importantly, there is a complete separation between the modeling and solving phases: you write a model, you compile it (while providing some data) in order to generate an XCSP$3$ instance (file), and you solve that problem instance by means of a constraint solver. You can also directly pilot the solving procedure in PyCSP$3$, possibly conducting an incremental solving strategy. In this document, you will find all that you need to know about PyCSP$3$, with more than 50 illustrative models.


翻译:在此文件中,我们引入了PyCSP 3$, Python 图书馆, 允许我们以宣示方式写出组合约束问题模型。 目前, 使用 PyCSP 3$, 您可以写出制约满意度和优化问题模型。 更具体地说, 您可以建立 CSP( 限制满意度问题) 和 COP( 限制优化问题) 模型。 重要的是, 模型和解决阶段之间完全分离: 您要写一个模型, 您要编集它( 提供一些数据), 以便生成 XCSP 3$ 实例( 文件), 您要用制约解答器解决问题。 您也可以直接用 PyCSP 3$ 3$ 来试点解决问题程序, 可能进行渐进解决策略 。 在此文件中, 您会发现您需要知道的关于 PyCSP 3$的所有信息, 并有超过 50 个示例模型 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
124+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
GitHub 热门:Python 算法大全,Star 超过 2 万
Python开发者
9+阅读 · 2019年4月27日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
polyglot:Pipeline 多语言NLP工具
AINLP
4+阅读 · 2018年12月11日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2022年2月22日
Arxiv
0+阅读 · 2022年2月21日
Arxiv
0+阅读 · 2022年2月21日
Arxiv
0+阅读 · 2022年2月21日
Arxiv
0+阅读 · 2022年2月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
GitHub 热门:Python 算法大全,Star 超过 2 万
Python开发者
9+阅读 · 2019年4月27日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
polyglot:Pipeline 多语言NLP工具
AINLP
4+阅读 · 2018年12月11日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员