This paper considers safe control synthesis for dynamical systems in the presence of uncertainty in the dynamics model and the safety constraints that the system must satisfy. Our approach captures probabilistic and worst-case model errors and their effect on control Lyapunov function (CLF) and control barrier function (CBF) constraints in the control-synthesis optimization problem. We show that both the probabilistic and robust formulations lead to second-order cone programs (SOCPs), enabling safe and stable control synthesis that can be performed efficiently online. We evaluate our approach in PyBullet simulations of an autonomous robot navigating in unknown environments and compare the performance with a baseline CLF-CBF quadratic programming approach.
翻译:本文件在动态模型存在不确定性和系统必须满足的安全限制的情况下,考虑动态系统的安全控制合成。我们的方法捕捉概率和最坏的模型错误及其对控制 Lyapunov 函数(CLF)和控制屏障功能(CBF)在控制-合成优化问题中的影响。我们表明,概率和稳健的配方都会导致二阶锥形(SOCPs)程序,从而能够有效地在网上进行安全稳定的控制合成。我们评估了我们在PyBullet模拟一个在未知环境中自主飞行的机器人在未知环境中飞行的方法,并将性能与CLF-CBF的基底二次编程方法进行比较。