For a connected graph $G = (V, E)$ and $s, t \in V$, a non-separating $s$-$t$ path is a path $P$ between $s$ and $t$ such that the set of vertices of $P$ does not separate $G$, that is, $G - V(P)$ is connected. An $s$-$t$ path is non-disconnecting if $G - E(P)$ is connected. The problems of finding shortest non-separating and non-disconnecting paths are both known to be NP-hard. In this paper, we consider the problems from the viewpoint of parameterized complexity. We show that the problem of finding a non-separating $s$-$t$ path of length at most $k$ is W[1]-hard parameterized by $k$, while the non-disconnecting counterpart is fixed-parameter tractable parameterized by $k$. We also consider the shortest non-separating path problem on several classes of graphs and show that this problem is NP-hard even on bipartite graphs, split graphs, and planar graphs. As for positive results, the shortest non-separating path problem is fixed-parameter tractable parameterized by $k$ on planar graphs and polynomial-time solvable on chordal graphs if $k$ is the shortest path distance between $s$ and $t$.
翻译:对于连接的图形 $G = (V, E) 美元 和 美元 = (V, E) 美元 和 美元 = (t) V美元, 一个不分离的美元路径是一条路径 $P 美元和 美元之间的路径。 在本文中,我们从参数化复杂度的角度来考虑问题,这样一套美元顶点并不分离美元,也就是说,美元 - V(P) 美元是连接的。如果连接了$G - E(P) 美元,那么一条美元路径就不存在断开。找到最短的非分离和非分离路径的问题众所周知是硬的。在本文件中,我们从参数化的复杂度的角度来考虑问题。我们表明,找到非分离的美元路径,即美元,美元,即美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,一个不连接的对等点的参数是固定的参数。我们还认为,在数个图表类中最短的非分离路径,美元,如果平面的平面的平面的平面的平面的平面是正的平面的平面的平面, 。