In this paper, we consider Strassen's version of optimal transport (OT) problem, which concerns minimizing the excess-cost probability (i.e., the probability that the cost is larger than a given value) over all couplings of two given distributions. We derive large deviation, moderate deviation, and central limit theorems for this problem. Our proof is based on Strassen's dual formulation of the OT problem, Sanov's theorem on the large deviation principle (LDP) of empirical measures, as well as the moderate deviation principle (MDP) and central limit theorems (CLT) of empirical measures. In order to apply the LDP, MDP, and CLT to Strassen's OT problem, nested formulas for Strassen's OT problem are derived. Based on these nested formulas and using a splitting technique, we construct asymptotically optimal solutions to Strassen's OT problem and its dual formulation.
翻译:在本文中,我们考虑了斯特拉斯森对最佳运输(OT)问题的版本,它涉及将超成本概率(即成本大于给定价值的概率)降到两个特定分布的所有组合之上。我们从这一问题中得出了巨大的偏差、中度偏差和中央限值理论。我们的证据基于斯特拉斯森对OT问题的双重表述、萨诺夫对经验措施的大偏差原则(LDP)的理论以及经验性措施的中度偏差原则(MDP)和中央限值理论(CLT)。为了将LDP、MDP和CLTT应用于斯特拉斯森的OT问题,我们根据斯特拉斯森奥特问题的嵌套公式并使用分裂技术,我们为斯特拉斯森的OT问题及其双重配方构建了非典型的最佳解决方案。