Self-supervised learning deals with problems that have little or no available labeled data. Recent work has shown impressive results when underlying classes have significant semantic differences. One important dataset in which this technique thrives is ImageNet, as intra-class distances are substantially lower than inter-class distances. However, this is not the case for several critical tasks, and general self-supervised learning methods fail to learn discriminative features when classes have closer semantics, thus requiring more robust strategies. We propose a strategy to tackle this problem, and to enable learning from unlabeled data even when samples from different classes are not prominently diverse. We approach the problem by leveraging a novel ensemble-based clustering strategy where clusters derived from different configurations are combined to generate a better grouping for the data samples in a fully-unsupervised way. This strategy allows clusters with different densities and higher variability to emerge, which in turn reduces intra-class discrepancies, without requiring the burden of finding an optimal configuration per dataset. We also consider different Convolutional Neural Networks to compute distances between samples. We refine these distances by performing context analysis and group them to capture complementary information. We consider two applications to validate our pipeline: Person Re-Identification and Text Authorship Verification. These are challenging applications considering that classes are semantically close to each other and that training and test sets have disjoint identities. Our method is robust across different modalities and outperforms state-of-the-art results with a fully-unsupervised solution without any labeling or human intervention.


翻译:自我监督的学习涉及到很少或根本没有标签数据的问题。 最近的工作显示, 当基础类存在显著的语义差异时, 基础类存在显著的语义差异时, 令人印象深刻的结果令人印象深刻。 这个技术兴盛的一个重要数据集是图像网络, 因为类内距离大大低于阶级之间的距离。 但是, 对于一些关键任务来说, 情况并非如此, 普通的自我监督的学习方法在课堂有更近的语义时无法学习歧视性特征, 从而需要更强有力的战略。 我们提出了一个解决这一问题的战略, 并且能够从未标记的数据中学习, 即使不同类的样本并不明显不同。 我们通过利用新型的基于共同语言的组群战略来解决这个问题, 由不同配置的组群组合在一起, 从而以完全不受监督的方式为数据样本生成更好的分组。 这种战略允许具有不同密度和更高变异性的群集, 从而减少类内部差异, 而不需要找到每个数据集的最佳配置。 我们还考虑不同的革命神经网络来测量样本之间的距离。 我们通过进行背景分析来改进这些距离, 并且通过对每类组合进行更精确的应用程序进行更精确的测试 。 我们考虑每类的校正测试 。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
17+阅读 · 2018年4月2日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
17+阅读 · 2018年4月2日
Arxiv
15+阅读 · 2018年2月4日
相关基金
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员