Robust multi-agent trajectory prediction is essential for the safe control of robotic systems. A major challenge is to efficiently learn a representation that approximates the true joint distribution of contextual, social, and temporal information to enable planning. We propose Latent Variable Sequential Set Transformers which are encoder-decoder architectures that generate scene-consistent multi-agent trajectories. We refer to these architectures as "AutoBots". The encoder is a stack of interleaved temporal and social multi-head self-attention (MHSA) modules which alternately perform equivariant processing across the temporal and social dimensions. The decoder employs learnable seed parameters in combination with temporal and social MHSA modules allowing it to perform inference over the entire future scene in a single forward pass efficiently. AutoBots can produce either the trajectory of one ego-agent or a distribution over the future trajectories for all agents in the scene. For the single-agent prediction case, our model achieves top results on the global nuScenes vehicle motion prediction leaderboard, and produces strong results on the Argoverse vehicle prediction challenge. In the multi-agent setting, we evaluate on the synthetic partition of TrajNet++ dataset to showcase the model's socially-consistent predictions. We also demonstrate our model on general sequences of sets and provide illustrative experiments modelling the sequential structure of the multiple strokes that make up symbols in the Omniglot data. A distinguishing feature of AutoBots is that all models are trainable on a single desktop GPU (1080 Ti) in under 48h.
翻译:多试剂轨迹预测对于机器人系统的安全控制至关重要。 一项重大挑战是如何高效地学习一种代表形式, 以近似于背景、 社会和时间信息的真实联合分布, 以便规划。 我们提议了中位变量序列设置变异器, 这些变异器是编码器- 解码器结构, 能够生成符合场景的多试剂轨迹。 我们将这些结构称为“ AutoBots ” 。 编码器是一个交错的时间和社会多头自控模块堆, 可在时间和社会层面之间进行异变处理。 解码器使用可学习的种子参数, 与时间和社会 MHSA 模块相结合, 使其能够在一个前行路口中对整个未来场进行推断。 自动包可以生成一个自控器的轨迹轨迹, 或者在现场所有代理剂总轨迹的轨迹分布。 对于单位试样模型的预测, 我们的模型在时间和社会层面的轨迹模型中可以实现顶级结果。 我们的轨迹模型在轨迹定位头板头板头板上, 并生成了多动的模型, 预估测显示多路面的轨图。