Complex Event Processing (CEP) is a set of methods that allow efficient knowledge extraction from massive data streams using complex and highly descriptive patterns. Numerous applications, such as online finance, healthcare monitoring and fraud detection use CEP technologies to capture critical alerts, potential threats, or vital notifications in real time. As of today, in many fields, patterns are manually defined by human experts. However, desired patterns often contain convoluted relations that are difficult for humans to detect, and human expertise is scarce in many domains. We present REDEEMER (REinforcement baseD cEp pattErn MinER), a novel reinforcement and active learning approach aimed at mining CEP patterns that allow expansion of the knowledge extracted while reducing the human effort required. This approach includes a novel policy gradient method for vast multivariate spaces and a new way to combine reinforcement and active learning for CEP rule learning while minimizing the number of labels needed for training. REDEEMER aims to enable CEP integration in domains that could not utilize it before. To the best of our knowledge, REDEEMER is the first system that suggests new CEP rules that were not observed beforehand, and is the first method aimed for increasing pattern knowledge in fields where experts do not possess sufficient information required for CEP tools. Our experiments on diverse data-sets demonstrate that REDEEMER is able to extend pattern knowledge while outperforming several state-of-the-art reinforcement learning methods for pattern mining.


翻译:复杂事件处理(CEP)是利用复杂和高度描述性模式从大量数据流中有效提取知识的一套方法,许多应用,例如在线金融、保健监测和欺诈检测,都利用CEP技术实时捕捉关键警报、潜在威胁或重要通知。从今天起,在许多领域,模式是由人类专家手工界定的。然而,理想模式往往包含人类难以探测的混乱关系,在许多领域,人的专门知识稀缺。我们提出了REDEEMER(REEMEAR)(EPR) (EP Basement base D CEp PattErn MinER),这是旨在开采CEP模式的新强化和积极学习方法,目的是扩大所获取的知识,同时减少人类工作所需的大量多变空间的新的政策梯度方法,以及一种将CEP规则学习的强化和积极学习结合起来的新方法,同时尽量减少培训所需的标签数量。REDEEMER(REDEMEER)是第一个提出新的CEP规则的系统,事先未予遵守,同时减少人类工作需要的人类努力。我们为REEF提供大量学习工具的实地经验,这是我们不断学习所需的方法。

0
下载
关闭预览

相关内容

CEP是一种比较新的企业架构(EA,Enterprise Architure)组件。CEP将数据看做一种数据流,基于规则引擎对业务过程中持续产生的各种事件进行复杂的处理,能够实现对连续数据的快速分析处理。可以应用在多种业务场景,如风险分析、程序化交易等。
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Contrast Pattern Mining: A Survey
Arxiv
0+阅读 · 2022年9月27日
Arxiv
16+阅读 · 2021年11月27日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员