We develop a theoretical model to study strategic interactions between adaptive learning algorithms. Applying continuous-time techniques, we uncover the mechanism responsible for collusion between Artificial Intelligence algorithms documented by recent experimental evidence. We show that spontaneous coupling between the algorithms' estimates leads to periodic coordination on actions that are more profitable than static Nash equilibria. We provide a sufficient condition under which this coupling is guaranteed to disappear, and algorithms learn to play undominated strategies. We apply our results to interpret and complement experimental findings in the literature and to the design of learning-robust strategy-proof mechanisms. We show that ex-post feedback provision guarantees robustness to the presence of learning agents. We fully characterize the optimal learning-robust mechanisms: they are menu mechanisms.
翻译:我们开发了一种理论模型来研究适应性学习算法之间的战略互动。 应用连续时间技术, 我们发现最近实验证据中记载的人工智能算法相互勾结的负责机制。 我们证明算法的估算之间自发合并导致定期协调比静态纳什平衡更有利可图的行动。 我们提供了一个充分的条件,保证这种结合消失,而算法学会发挥非主导性的战略。 我们运用我们的结果来解释和补充文献中的实验结果,设计学习- 野蛮战略的防腐机制。 我们证明事后反馈保证了学习代理人的存在。 我们充分描述最佳学习- 暴动机制:它们是菜单机制。