We develop an algebraic framework for sequential data assimilation of partially observed dynamical systems. In this framework, Bayesian data assimilation is embedded in a non-abelian operator algebra, which provides a representation of observables by multiplication operators and probability densities by density operators (quantum states). In the algebraic approach, the forecast step of data assimilation is represented by a quantum operation induced by the Koopman operator of the dynamical system. Moreover, the analysis step is described by a quantum effect, which generalizes the Bayesian observational update rule. Projecting this formulation to finite-dimensional matrix algebras leads to new computational data assimilation schemes that are (i) automatically positivity-preserving; and (ii) amenable to consistent data-driven approximation using kernel methods for machine learning. Moreover, these methods are natural candidates for implementation on quantum computers. Applications to data assimilation of the Lorenz 96 multiscale system and the El Nino Southern Oscillation in a climate model show promising results in terms of forecast skill and uncertainty quantification.
翻译:我们为部分观测到的动态系统的相继数据同化制定了代数框架。在这个框架内,贝叶斯数据同化嵌入了非abelian运算器代数中,该代数代表了乘数操作器的观测和密度操作器的概率密度(量子状态)。在代数方法中,数据同化的预测步骤由动态系统的Koopman操作器的量子操作进行。此外,分析步骤由量子效应描述,该量子效应概括了Bayesian观测更新规则。将这一配方投射到有限维矩阵代数中,导致新的计算数据同化计划,(一) 自动保有假设性;以及(二) 便于使用机器学习的内核法进行数据驱动的一致接近。此外,这些方法是用于量子计算机执行的自然选择。Lorenz 96多尺度系统和El Nino Southo Southcillation在气候模型中的数据同化应用显示了预测技能和不确定性量化方面的有希望的结果。