Spoken Language Understanding (SLU), a core component of the task-oriented dialogue system, expects a shorter inference latency due to the impatience of humans. Non-autoregressive SLU models clearly increase the inference speed but suffer uncoordinated-slot problems caused by the lack of sequential dependency information among each slot chunk. To gap this shortcoming, in this paper, we propose a novel non-autoregressive SLU model named Layered-Refine Transformer, which contains a Slot Label Generation (SLG) task and a Layered Refine Mechanism (LRM). SLG is defined as generating the next slot label with the token sequence and generated slot labels. With SLG, the non-autoregressive model can efficiently obtain dependency information during training and spend no extra time in inference. LRM predicts the preliminary SLU results from Transformer's middle states and utilizes them to guide the final prediction. Experiments on two public datasets indicate that our model significantly improves SLU performance (1.5\% on Overall accuracy) while substantially speed up (more than 10 times) the inference process over the state-of-the-art baseline.
翻译:语言语言理解(SLU)是任务导向对话系统的核心组成部分,由于人类的不耐烦,我们期望由于人类的不耐烦而缩短推导时间。非偏向 SLU模型明显提高推论速度,但因每个槽块之间缺乏相继依赖性信息而出现不协调的排列问题。为了弥补这一缺陷,我们在本文件中提议了一个名为“双层-REfine变异器”的新颖的非偏向 SLU模型,其中包括一个Slot Label(SLG)生成任务和一个层反射机制(LRM)。 SLG的定义是用象征序列和生成的槽标签生成下一个槽标签标签。与SLG相比,不偏向性模型可以在培训期间有效地获得依赖性信息,不花费额外的时间进行推断。LRMM预测变换器中状态的初步SLU结果,并利用它们指导最后的预测。两个公共数据集的实验表明,我们的模型大大改进了SLU的性能(1.5级总体精度),同时大大加快了总精度的基线进程(超过10次)。