Representational similarity analysis (RSA) tests models of brain computation by investigating how neural activity patterns reflect experimental conditions. Instead of predicting activity patterns directly, the models predict the geometry of the representation, as defined by the representational dissimilarity matrix (RDM), which captures to what extent experimental conditions are associated with similar or dissimilar activity patterns. RSA therefore first quantifies the representational geometry by calculating a dissimilarity measure for each pair of conditions, and then compares the estimated representational dissimilarities to those predicted by each model. Here we address two central challenges of RSA: First, dissimilarity measures such as the Euclidean, Mahalanobis, and correlation distance, are biased by measurement noise, which can lead to incorrect inferences. Unbiased dissimilarity estimates can be obtained by crossvalidation, at the price of increased variance. Second, the pairwise dissimilarity estimates are not statistically independent, and ignoring this dependency makes model comparison statistically suboptimal. We present an analytical expression for the mean and (co)variance of both biased and unbiased estimators of the squared Euclidean and Mahalanobis distance, allowing us to quantify the bias-variance trade-off. We also use the analytical expression of the covariance of the dissimilarity estimates to whiten the RDM estimation errors. This results in a new criterion for RDM similarity, the whitened unbiased RDM cosine similarity (WUC), which allows for near-optimal model selection combined with robustness to correlated measurement noise.


翻译:代表相似性分析(RSA) 通过调查神经活动模式如何反映实验性条件,测试大脑计算模型的表示相似性分析(RSA) 通过调查神经活动模式如何反映实验性条件,测试大脑计算模型。 模型预测的表示性结构,而不是直接预测活动模式。 模型预测的表示性结构,按照代表性差异矩阵(RDM)的定义,显示实验性条件在多大程度上与类似或不同活动模式相关。 因此,RSA首先通过计算每种条件的不同度计量度来量化代表性几何性,然后将估计的表示性代表性差异与每个模型预测的不相异性进行比较。 这里我们讨论的是RSA的两个中心挑战:首先,如Euideclan、Mahalanobis和相关性距离等差异性措施,因测量性噪音而偏差,这可能导致不正确的推断。 通过交叉比较,可以得出非相异性估计值。 其次,对相异性估计不相异性估计在统计性模型中,使模型的模型在统计性下进行对比性亚优性比较。 我们用一个分析的表达方式表示, 接近于度和(co) 误差性和偏差的测量性测测测测度,也让我们的测测测测测测测测了马的测差性。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
243+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
87+阅读 · 2019年10月21日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月2日
Adversarial Metric Attack for Person Re-identification
VIP会员
相关VIP内容
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员