Artificial Intelligence (AI)-powered pathology is a revolutionary step in the world of digital pathology and shows great promise to increase both diagnosis accuracy and efficiency. However, defocus and motion blur can obscure tissue or cell characteristics hence compromising AI algorithms'accuracy and robustness in analyzing the images. In this paper, we demonstrate a deep-learning-based approach that can alleviate the defocus and motion blur of a microscopic image and output a sharper and cleaner image with retrieved fine details without prior knowledge of the blur type, blur extent and pathological stain. In this approach, a deep learning classifier is first trained to identify the image blur type. Then, two encoder-decoder networks are trained and used alone or in combination to deblur the input image. It is an end-to-end approach and introduces no corrugated artifacts as traditional blind deconvolution methods do. We test our approach on different types of pathology specimens and demonstrate great performance on image blur correction and the subsequent improvement on the diagnosis outcome of AI algorithms.
翻译:人工智能(AI)动力病理学是数字病理学世界中的一个革命性步骤,它显示了提高诊断准确性和效率的巨大前景。然而,脱焦和运动模糊会模糊组织或细胞特性,从而损害AI算法在分析图像方面的准确性和稳健性。在本文中,我们展示了一种深层次的学习方法,可以减轻微小图像脱焦和运动模糊,并产生一种更锋利、更干净的图像,其精细的细节无须事先了解模糊类型、模糊程度和病理上的污点。在这个方法中,一个深层次的学习分类师首先受过培训,以辨别模糊的图像类型。然后,两个编码解密器网络被单独地或合并地使用,以解析输入图像。这是一种端到端的方法,没有像传统的盲人解剖方法那样引入腐蚀性文物。我们测试了我们不同类型病理学标本的方法,并展示了图像模糊性校正的出色表现以及随后对AI算结果的改进。