Despite the success of recent abstractive summarizers on automatic evaluation metrics, the generated summaries still present factual inconsistencies with the source document. In this paper, we focus on entity-level factual inconsistency, i.e. reducing the mismatched entities between the generated summaries and the source documents. We therefore propose a novel entity-based SpanCopy mechanism, and explore its extension with a Global Relevance component. Experiment results on four summarization datasets show that SpanCopy can effectively improve the entity-level factual consistency with essentially no change in the word-level and entity-level saliency. The code is available at https://github.com/Wendy-Xiao/Entity-based-SpanCopy
翻译:尽管最近关于自动评价指标的抽象摘要集取得了成功,但所编摘要仍然与原始文件的事实不一致。在本文件中,我们侧重于实体一级的事实不一致,即减少所编摘要与原始文件之间的不匹配实体。因此,我们提议建立一个新的基于实体的SpanCopy机制,并探讨其与全球相关性部分的延伸。四个摘要数据集的实验结果表明,SpanCopy可以有效地改善实体一级的事实一致性,而字级和实体一级显著性基本上没有变化。该代码可在https://github.com/Wendy-Xiao/Entity-bound-SpanCopy上查阅。