Quadruped robots manifest great potential to traverse rough terrains with payload. Numerous traditional control methods for legged dynamic locomotion are model-based and exhibit high sensitivity to model uncertainties and payload variations. Therefore, high-performance model parameter estimation becomes indispensable. However, the inertia parameters of payload are usually unknown and dynamically changing when the quadruped robot is deployed in versatile tasks. To address this problem, online identification of the inertia parameters and the Center of Mass (CoM) position of the payload for the quadruped robots draw an increasing interest. This study presents an adaptive controller based on the online payload identification for the high payload capacity (the ratio between payload and robot's self-weight) quadruped locomotion. We name it as Adaptive Controller for Quadruped Locomotion (ACQL), which consists of a recursive update law and a control law. ACQL estimates the external forces and torques induced by the payload online. The estimation is incorporated in inverse-dynamics-based Quadratic Programming (QP) to realize a trotting gait. As such, the tracking accuracy of the robot's CoM and orientation trajectories are improved. The proposed method, ACQL, is verified in a real quadruped robot platform. Experiments prove the estimation efficacy for the payload weighing from 20 kg to 75 kg and loaded at different locations of the robot's torso.


翻译:四重机器人显示极有可能用有效载荷穿越粗糙的地形。 许多传统的腿动动动移动控制方法都以模型为基础,表现出对模型不确定性和有效载荷变异的高度敏感性。 因此,高性能模型参数估计变得不可或缺。 然而,当四重机器人被部署完成多种任务时,有效载荷的惯性参数通常不为人知,而且动态变化。为了解决这个问题,在线识别惯性参数和四重机器人有效载荷中心(COM)的位置越来越引人兴趣。这项研究展示了一个适应性控制器,该控制器基于高有效载荷能力的在线有效载荷识别(有效载荷与机器人自重量之比之比)四重移动。我们把它命名为四重 Locomotion (ACQL) 的适应性控制参数通常是未知的。 由循环更新法和控制法构成的。 ACQQL估计了四重机器人有效载荷的外部力量和托盘位置。基于反动力的二次编程编程(QP) 来实现高载载载载载能力(有效载荷和机器人自重重量之重) 的四重) 的四重移动定位定位定位。我们将其命名为四重定位定位定位定位定位定位定位定位定位定位。 。 正在对75重的轨道对等的轨道对等的轨道对机压的轨道定位进行实时定位,对机压式轨道对机的轨道对机载载载载载载载载压的轨道定位进行校正对机的轨道定位进行精确校正对等。

0
下载
关闭预览

相关内容

【课程推荐】人工智能导论:Introduction to Articial Intelligence
专知会员服务
100+阅读 · 2019年12月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
已删除
将门创投
5+阅读 · 2019年3月29日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
已删除
将门创投
5+阅读 · 2019年3月29日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员