Fatigue is a loss in cognitive or physical performance due to physiological factors such as insufficient sleep, long work hours, stress, and physical exertion. It adversely affects the human body and can slow reaction times, reduce attention, and limit short-term memory. Hence, there is a need to monitor a person's state to avoid extreme fatigue conditions that can result in physiological complications. However, tools to understand and assess fatigue are minimal. This paper primarily focuses on building an experimental setup that induces cognitive fatigue (CF) and physical fatigue (PF) through multiple cognitive and physical tasks while simultaneously recording physiological data. First, we built a prototype sensor suit embedded with numerous physiological sensors for easy use during data collection. Second, participants' self-reported visual analog scores (VAS) are reported after each task to confirm fatigue induction. Finally, an evaluation system is built that utilizes machine learning (ML) models to detect states of CF and PF from sensor data, thus providing an objective measure. Our methods beat state-of-the-art approaches, where Random Forest performs the best in detecting PF with an accuracy of 80.5% while correctly predicting the true PF condition 88% of the time. On the other hand, the long short-term memory (LSTM) recurrent neural network produces the best results in detecting CF in the subjects (with 84.1% accuracy, 0.9 recall).


翻译:由于睡眠不足、工作时间长、压力和体力锻炼等生理因素造成认知或物理性能的丧失,是认知或物理性能的丧失。它会对人类身体产生不利影响,并会减慢反应时间、减少注意力和限制短期记忆。因此,有必要监测一个人的状况,以避免会导致生理并发症的极端疲劳状况。然而,理解和评估疲劳的工具很少。本文主要侧重于通过多重认知和物理任务,通过多重物理任务,通过多种认知和体力任务,导致认知疲劳(CF)和体力疲劳(PF)的实验性设置。首先,我们建造了一台带有许多生理传感器的原型传感器,在数据收集期间易于使用。第二,参与者自我报告的视觉模拟分数(VAS)在每次任务后都报告证实疲劳感应。最后,建立了一个评估系统,利用机器学习(ML)模型从传感器数据中检测CFF和FF的状态,从而提供客观的衡量尺度。我们的方法比最先进的方法,即随机森林公司在发现PFPFFF的精度方面做得最好,精确度为80.5%,同时正确预测NPFS-CM的永久记忆状态。88%。

0
下载
关闭预览

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员