Without sufficient information about researchers data sharing, there is a risk of mismatching FAIR data service efforts with the needs of researchers. This study describes a methodology where departmental publications are used to analyse the ways in which computer scientists share research data. All journal articles published by researchers in the computer science department of the case studys university during 2019 were extracted for scrutiny from the current research information system. For these 193 articles, a coding framework was developed to capture the key elements of acquiring and sharing research data. Furthermore, a rudimentary classification of the main study types exhibited in the investigated articles was developed to accommodate the multidisciplinary nature of the case departments research agenda. Human interaction and intervention studies often collected original data, whereas research on novel computational methods and life sciences more frequently used openly available data. Articles that made data available for reuse were most often in life science studies, whereas data sharing was least frequent in human interaction studies. The use of open code was most frequent in life science studies and novel computational methods. The findings highlight that multidisciplinary research organisations may include diverse subfields that have their own cultures of data sharing, and suggest that research information system-based methods may be valuable additions to the questionnaire and interview methodologies eliciting insight into researchers data sharing. The collected data and coding framework are provided as open data to facilitate future research.


翻译:在研究人员数据共享方面,如果没有足够的资料说明研究人员的数据共享,则有可能使FAIR数据服务工作与研究人员的需要不匹配。本研究报告描述了一种方法,即部门出版物用来分析计算机科学家分享研究数据的方法;2019年,案例研究大学计算机科学系研究人员出版的所有期刊文章都从目前的研究信息系统中提取以供审查;关于这193篇文章,制定了一个编码框架,以记录获取和分享研究数据的关键要素;此外,还制定了调查文章中显示的主要研究类型的基本分类,以适应案例部门研究议程的多学科性质;人类互动和干预研究经常收集原始数据,而关于新计算方法和生命科学的研究则更经常公开地使用这些数据;在生命科学研究中,最经常提供数据再利用的数据,而数据共享在人类互动研究中则最少;在生命科学研究研究和新计算方法中,使用开放代码最为频繁;研究结果强调,多学科研究组织可能包括具有自身数据共享文化的多种子领域,并建议研究信息系统方法可能是对数据收集和访谈框架的宝贵补充。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
【实用书】数据科学基础,484页pdf,Foundations of Data Science
专知会员服务
118+阅读 · 2020年5月28日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Bridging the gap between emotion and joint action
Arxiv
0+阅读 · 2021年8月13日
Arxiv
0+阅读 · 2021年8月12日
A Survey on Data Augmentation for Text Classification
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员