Adoption of artificial intelligence medical imaging applications is often impeded by barriers between healthcare systems and algorithm developers given that access to both private patient data and commercial model IP is important to perform pre-deployment evaluation. This work investigates a framework for secure, privacy-preserving and AI-enabled medical imaging inference using CrypTFlow2, a state-of-the-art end-to-end compiler allowing cryptographically secure 2-party Computation (2PC) protocols between the machine learning model vendor and target patient data owner. A common DenseNet-121 chest x-ray diagnosis model was evaluated on multi-institutional chest radiographic imaging datasets both with and without CrypTFlow2 on two test sets spanning seven sites across the US and India, and comprising 1,149 chest x-ray images. We measure comparative AUROC performance between secure and insecure inference in multiple pathology classification tasks, and explore model output distributional shifts and resource constraints introduced by secure model inference. Secure inference with CrypTFlow2 demonstrated no significant difference in AUROC for all diagnoses, and model outputs from secure and insecure inference methods were distributionally equivalent. The use of CrypTFlow2 may allow off-the-shelf secure 2PC between healthcare systems and AI model vendors for medical imaging, without changes in performance, and can facilitate scalable pre-deployment infrastructure for real-world secure model evaluation without exposure to patient data or model IP.


翻译:医疗成像应用人工智能往往受到医疗系统与算法开发者之间障碍的阻碍,因为获得私人病人数据和商业模型IP系统对于进行部署前评价十分重要。这项工作调查了使用CrypTFlow2 进行安全、隐私保护和AI辅助医疗成像推断的框架,CrypTFlow2 是一个最先进的端对端编译程序,允许机器学习模型供应商与目标病人数据拥有者之间进行加密安全双方计算(2PC)协议,并允许机器学习模型供应商与目标病人数据所有者之间进行加密双向计算。对多机构胸前放射成像数据集进行共同的DenseNet-121胸前X射线诊断模型,无论是否进行加密TFLow2, 遍及美国和印度7个地点的两套测试机组都进行安全、隐私保存和AI-光学图像分析。我们测量AUROC在多种病理分类任务中的安全性和不安全的推论之间的性能,并探索模型模型推理模型引入的输出分配和资源限制。 CrypTF2 与安全性和安全性定位系统之间没有明显差别分析,使用安全性和安全性影象分析方法。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】'Mastering Go 第二版中文版',143页pdf
专知会员服务
47+阅读 · 2020年11月1日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
如何评测AI系统?
StarryHeavensAbove
4+阅读 · 2018年5月19日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年10月8日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
如何评测AI系统?
StarryHeavensAbove
4+阅读 · 2018年5月19日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员