Recovering color images and videos from highly undersampled data is a fundamental and challenging task in face recognition and computer vision. By the multi-dimensional nature of color images and videos, in this paper, we propose a novel tensor completion approach, which is able to efficiently explore the sparsity of tensor data under the discrete cosine transform (DCT). Specifically, we introduce two ``sparse + low-rank'' tensor completion models as well as two implementable algorithms for finding their solutions. The first one is a DCT-based sparse plus weighted nuclear norm induced low-rank minimization model. The second one is a DCT-based sparse plus $p$-shrinking mapping induced low-rank optimization model. Moreover, we accordingly propose two implementable augmented Lagrangian-based algorithms for solving the underlying optimization models. A series of numerical experiments including color image inpainting and video data recovery demonstrate that our proposed approach performs better than many existing state-of-the-art tensor completion methods, especially for the case when the ratio of missing data is high.
翻译:从大量未充分取样的数据中回收彩色图像和视频是面对面识别和计算机视觉方面一项根本性和具有挑战性的任务。根据彩色图像和视频的多维性质,我们在本文件中提出了一种新的“分解”变形(DCT)中能够有效探索高压数据的广度的“高压完成”方法。具体地说,我们引入了两种“偏差 + 低级 ” 高压完成模型以及两种可执行的算法,以找到解决方案。第一个是基于DCT的稀薄加加权核规范的“稀薄加加权”最小化模型。第二个是基于DCT的稀薄加以美元冲淡的绘图导致低级优化模型。此外,我们因此提出了两种可用于解决基本优化模型的可执行的拉格朗吉亚强化算法。一系列数字实验,包括油漆中的彩色图像和视频数据回收,表明我们拟议的方法比许多现有的“高水平”的“高压完成方法表现得更好,特别是当缺失数据比率高时。