We propose a multimodal singing language classification model that uses both audio content and textual metadata. LRID-Net, the proposed model, takes an audio signal and a language probability vector estimated from the metadata and outputs the probabilities of the target languages. Optionally, LRID-Net is facilitated with modality dropouts to handle a missing modality. In the experiment, we trained several LRID-Nets with varying modality dropout configuration and test them with various combinations of input modalities. The experiment results demonstrate that using multimodal input improves the performance. The results also suggest that adopting modality dropout does not degrade performance of the model when there are full modality inputs while enabling the model to handle missing modality cases to some extent.


翻译:我们建议采用多式歌唱语言分类模式,同时使用音频内容和文本元数据。拟议模式LRID-Net采用音频信号和语言概率矢量,根据元数据和产出估计目标语言的概率。可以选择的是,LRID-Net使用模式辍学者处理缺失模式的便利。在实验中,我们培训了数个不同模式辍学配置的LRID-Net,并用各种投入模式组合测试了这些网络。实验结果表明,使用多种模式投入提高了绩效。结果还表明,采用模式辍学不会降低模式在有完整模式投入时的绩效,同时使模式能够在某种程度上处理缺失模式案例。

0
下载
关闭预览

相关内容

【Yoshua Bengio】因果表示学习,附视频与72页ppt
专知会员服务
75+阅读 · 2021年1月7日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】机器学习Primer,122页pdf
专知会员服务
106+阅读 · 2020年10月5日
【课程推荐】人工智能导论:Introduction to Articial Intelligence
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
54+阅读 · 2019年11月20日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
CVPR 2018 笔记
计算机视觉战队
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
课程 | Andrew Ng 深度学习课程笔记3
黑龙江大学自然语言处理实验室
3+阅读 · 2017年9月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Music Transformer
Arxiv
5+阅读 · 2018年12月12日
VIP会员
相关VIP内容
【Yoshua Bengio】因果表示学习,附视频与72页ppt
专知会员服务
75+阅读 · 2021年1月7日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】机器学习Primer,122页pdf
专知会员服务
106+阅读 · 2020年10月5日
【课程推荐】人工智能导论:Introduction to Articial Intelligence
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
54+阅读 · 2019年11月20日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
CVPR 2018 笔记
计算机视觉战队
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
课程 | Andrew Ng 深度学习课程笔记3
黑龙江大学自然语言处理实验室
3+阅读 · 2017年9月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员