Building general-purpose robots to perform an enormous amount of tasks in a large variety of environments at the human level is notoriously complicated. It requires the robot learning to be sample-efficient, generalizable, compositional, and incremental. In this work, we introduce a systematic learning framework called SAGCI-system towards achieving these above four requirements. Our system first takes the raw point clouds gathered by the camera mounted on the robot's wrist as the inputs and produces initial modeling of the surrounding environment represented as a URDF. Our system adopts a learning-augmented differentiable simulation that loads the URDF. The robot then utilizes the interactive perception to interact with the environments to online verify and modify the URDF. Leveraging the simulation, we propose a new model-based RL algorithm combining object-centric and robot-centric approaches to efficiently produce policies to accomplish manipulation tasks. We apply our system to perform articulated object manipulation, both in the simulation and the real world. Extensive experiments demonstrate the effectiveness of our proposed learning framework. Supplemental materials and videos are available on https://sites.google.com/view/egci.
翻译:建立通用机器人,在人类层面的多种环境中执行大量任务,这是众所周知的复杂问题。它要求机器人学习样本效率高、可概括化、构成性和递增性。在这项工作中,我们引入了一个系统化学习框架,称为SAGCI系统,以实现上述四项以上要求。我们的系统首先将安装在机器人手腕上的相机所收集的原始云作为投入,并制作以URDF为代表的周围环境的初步模型。我们的系统采用了一种学习强化的不同模拟,将URDF装入其中。机器人然后利用交互感知与环境互动,在线核查和修改URDF。我们利用模拟,提出了一个新的基于模型的RL算法,将物体中心方法和机器人中心方法结合起来,以高效地制定政策完成操作任务。我们运用我们的系统,在模拟和现实世界中进行明确的物体操纵。广泛的实验展示了我们拟议的学习框架的有效性。补充材料和视频可在 https://sites.gogle.com/view/eggi上查阅 。