This article aims to present a new method to reconstruct slowly varying width defects in 2D waveguides using locally resonant frequencies. At these frequencies, locally resonant modes propagate in the waveguide under the form of Airy functions depending on a parameter called the locally resonant point. In this particular point, the local width of the waveguide is known and its location can be recovered from boundary measurements of the wavefield. Using the same process for different frequencies, we produce a good approximation of the width in all the waveguide. Given multi-frequency measurements taken at the surface of the waveguide, we provide a L \infty-stable explicit method to reconstruct the width of the waveguide. We finally validate our method on numerical data, and we discuss its applications and limits.
翻译:文章的目的是提出一种新的方法,用本地共振频率重建2D波导体中缓慢变化的宽度缺陷。 在这些频率上,本地共振模式以空气函数的形式在波导体中传播,这取决于一个称为本地共振点的参数。在这一特定点上,波导的局部宽度是已知的,其位置可以从波场的边界测量中恢复。使用不同频率的相同程序,我们生产出所有波导体宽度的良好近似值。考虑到在波导表面进行的多频率测量,我们提供了一种L\infty可分布的清晰方法来重建波导体的宽度。我们最终验证了我们关于数字数据的方法,我们讨论了其应用和限制。