Recent advancements in Vehicle-to-Everything communication technology have enabled autonomous vehicles to share sensory information to obtain better perception performance. With the rapid growth of autonomous vehicles and intelligent infrastructure, the V2X perception systems will soon be deployed at scale, which raises a safety-critical question: \textit{how can we evaluate and improve its performance under challenging traffic scenarios before the real-world deployment?} Collecting diverse large-scale real-world test scenes seems to be the most straightforward solution, but it is expensive and time-consuming, and the collections can only cover limited scenarios. To this end, we propose the first open adversarial scene generator V2XP-ASG that can produce realistic, challenging scenes for modern LiDAR-based multi-agent perception systems. V2XP-ASG learns to construct an adversarial collaboration graph and simultaneously perturb multiple agents' poses in an adversarial and plausible manner. The experiments demonstrate that V2XP-ASG can effectively identify challenging scenes for a large range of V2X perception systems. Meanwhile, by training on the limited number of generated challenging scenes, the accuracy of V2X perception systems can be further improved by 12.3\% on challenging and 4\% on normal scenes. Our code will be released at https://github.com/XHwind/V2XP-ASG.
翻译:汽车对一切的通信技术最近的进展使得自主车辆能够分享感官信息,以取得更好的感知性能。随着自主车辆和智能基础设施的迅速增长,V2X感知系统将很快大规模部署,这提出了一个安全至关重要的问题:在现实部署之前,我们如何在具有挑战性的交通假设下评估和改进其性能?}收集各种大规模现实世界测试场景似乎是最直接的解决办法,但它费用昂贵,耗费时间,收集只能涵盖有限的情景。为此,我们提议第一个开放的对抗性场景发电机V2XP-ASG能够为基于LIDAR的现代多试剂感知系统产生现实的、具有挑战性的场景。V2XP-ASG学会如何在现实和富有挑战性的情况下构建一个对抗性的协作图,同时以对抗性和可信的方式渗透多剂。实验表明V2XP-ASG能够有效地识别大量V2X感知系统的具有挑战性的场景。同时,通过对产生挑战性的场景数量有限的场景的培训,V2X-X感知-A的准确性将在我们正常的SAR12/A12/12号上进一步改进我们正常的场景。</s>