This note extends the analysis of incremental PageRank in [B. Bahmani, A. Chowdhury, and A. Goel. Fast Incremental and Personalized PageRank. VLDB 2011]. In that work, the authors prove a running time of $O(\frac{nR}{\epsilon^2} \ln(m))$ to keep PageRank updated over $m$ edge arrivals in a graph with $n$ nodes when the algorithm stores $R$ random walks per node and the PageRank teleport probability is $\epsilon$. To prove this running time, they assume that edges arrive in a random order, and leave it to future work to extend their running time guarantees to adversarial edge arrival. In this note, we show that the random edge order assumption is necessary by exhibiting a graph and adversarial edge arrival order in which the running time is $\Omega \left(R n m^{\lg{\frac{3}{2}(1-\epsilon)}}\right)$. More generally, for any integer $d \geq 2$, we construct a graph and adversarial edge order in which the running time is $\Omega \left(R n m^{\log_d(H_d (1-\epsilon))}\right)$, where $H_d$ is the $d$th harmonic number.
翻译:本说明扩展了对[B. Bahmani, A. Chowdhury, A. and A. Goel. 快速递增和个性化 PageRank. VLDB 2011] 中递增 PageRank 的递增分析。 在这项工作中, 作者证明PageRank 以美元运行时间为美元运行时间为美元运行时间, 使 PageRank 以美元速递增时间更新超过 百万美元的边缘抵达时间, 在算法存储每个节点的随机行走美元和PageRank Teport的概率为$\ epsilon$。 为了证明这个运行时间, 他们假设边缘按随机顺序到达, 并留给未来工作将其运行时间保证延到敌对边缘到达的时间。 在本说明中, 我们显示随机边缘的假设是必要的, 通过显示一个图表和对抗边缘抵达顺序, 运行时间为$(nnrq$) $(1-\\\\ epslight) 。 在任何时间运行 $R\\\\\\\ rig_ rig_ rig_ rima rigal ma ma ma ral ma ma r) 。