Current robotic minimally invasive surgery (RMIS) platforms provide surgeons with no haptic feedback of the robot's physical interactions. This limitation forces surgeons to rely heavily on visual feedback and can make it challenging for surgical trainees to manipulate tissue gently. Prior research has demonstrated that haptic feedback can increase task accuracy in RMIS training. However, it remains unclear whether these improvements represent a fundamental improvement in skill, or if they simply stem from re-prioritizing accuracy over task completion time. In this study, we provide haptic feedback of the force applied by the surgical instruments using custom wrist-squeezing devices. We hypothesize that individuals receiving haptic feedback will increase accuracy (produce less force) while increasing their task completion time, compared to a control group receiving no haptic feedback. To test this hypothesis, N=21 novice participants were asked to repeatedly complete a ring rollercoaster surgical training task as quickly as possible. Results show that participants receiving haptic feedback apply significantly less force (0.67 N) than the control group, and they complete the task no faster or slower than the control group after twelve repetitions. Furthermore, participants in the feedback group decreased their task completion times significantly faster (7.68%) than participants in the control group (5.26%). This form of haptic feedback, therefore, has the potential to help trainees improve their technical accuracy without compromising speed.


翻译:目前,机器人微创手术平台没有提供外科医生机器人物理交互的触觉反馈。这种限制迫使外科医生严重依赖于视觉反馈,可能会导致外科培训者难以轻松操作组织。先前的研究已经证明,触觉反馈可以增加机器人微创手术技能训练的任务准确性。然而,目前尚不清楚这些改进是否代表技能的根本改进,还是仅仅源于将准确性优先于任务完成时间。在本研究中,我们使用自定义的手腕挤压装置对机器人手术器械施加了力触觉反馈。我们假设接受力触觉反馈的实验者将在增加任务完成时间的同时,通过降低力的应用,提高准确性,而与未接受力触觉反馈的对照组相比,其结果将更好。为了验证这一假设,我们要求 N=21 名新手参与者重复完成一个戒指过山车手术培训任务,在尽可能短的时间内完成。结果显示,接受力触觉反馈的实验者施加的力比对照组明显减少(0.67N),在十二次重复后,与对照组相比,任务完成时无更快或更慢的趋势。此外,反馈组参与者的任务完成时间下降了显著得快(7.68%),而对照组参与者的时间下降了 5.26%。因此,这种触觉反馈具有帮助培训者提高技术准确性而不损害速度的潜力。

0
下载
关闭预览

相关内容

【RecSys22教程】多阶段推荐系统的神经重排序,90页ppt
专知会员服务
25+阅读 · 2022年9月30日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员