The paper uses statistical and differential geometric motivation to acquire prior information about the learning capability of an artificial neural network on a given dataset. The paper considers a broad class of neural networks with generalized architecture performing simple least square regression with stochastic gradient descent (SGD). The system characteristics at two critical epochs in the learning trajectory are analyzed. During some epochs of the training phase, the system reaches equilibrium with the generalization capability attaining a maximum. The system can also be coherent with localized, non-equilibrium states, which is characterized by the stabilization of the Hessian matrix. The paper proves that neural networks with higher generalization capability will have a slower convergence rate. The relationship between the generalization capability with the stability of the neural network has also been discussed. By correlating the principles of high-energy physics with the learning theory of neural networks, the paper establishes a variant of the Complexity-Action conjecture from an artificial neural network perspective.


翻译:本文使用统计和不同的几何动机来获得关于某个数据集中人工神经网络学习能力的事先信息。 论文认为,有广泛的神经网络类别,其通用结构将具有简单的最平方的回归,与随机梯度梯度下降(SGD)作用。 正在分析学习轨迹中两个关键时代的系统特征。 在培训阶段的某些时期,系统达到平衡,其一般化能力达到最大化。 系统也可以与局部的、非平衡状态相一致,其特点是赫森矩阵稳定。 论文证明,具有更高一般化能力的神经网络将出现较慢的趋同率。 还讨论了一般化能力与神经网络稳定性之间的关系。 文件通过将高能物理原理与神经网络学习理论联系起来,从人工神经网络的角度确定了复杂行动预测的变式。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
57+阅读 · 2019年11月10日
“CVPR 2020 接受论文列表 1470篇论文都在这了
NeurIPS2019机器学习顶会接受论文列表!
GAN生成式对抗网络
17+阅读 · 2019年9月6日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
NeurIPS2019机器学习顶会接受论文列表!
GAN生成式对抗网络
17+阅读 · 2019年9月6日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员