This paper investigates the problem of providing ultra-reliable and energy-efficient virtual reality (VR) experiences for wireless mobile users. To ensure reliable ultra-high-definition (UHD) video frame delivery to mobile users and enhance their immersive visual experiences, a coordinated multipoint (CoMP) transmission technique and millimeter wave (mmWave) communications are exploited. Owing to user movement and time-varying wireless channels, the wireless VR experience enhancement problem is formulated as a sequence-dependent and mixed-integer problem with a goal of maximizing users' feeling of presence (FoP) in the virtual world, subject to power consumption constraints on access points (APs) and users' head-mounted displays (HMDs). The problem, however, is hard to be directly solved due to the lack of users' accurate tracking information and the sequence-dependent and mixed-integer characteristics. To overcome this challenge, we develop a parallel echo state network (ESN) learning method to predict users' tracking information by training fresh and historical tracking samples separately collected by APs. With the learnt results, we propose a deep reinforcement learning (DRL) based optimization algorithm to solve the formulated problem. In this algorithm, we implement deep neural networks (DNNs) as a scalable solution to produce integer decision variables and solving a continuous power control problem to criticize the integer decision variables. Finally, the performance of the proposed algorithm is compared with various benchmark algorithms, and the impact of different design parameters is also discussed. Simulation results demonstrate that the proposed algorithm is more 4.14% energy-efficient than the benchmark algorithms.
翻译:本文探讨了向无线移动用户提供超可靠和节能虚拟现实的经验问题。为确保向移动用户提供可靠的超高定义(UHD)视频框架,并加强其隐性视觉经验,开发了协调的多点传输技术和毫米波(mmWave)通信。由于用户流动和时间变化不定的无线频道,无线视频增强经验问题被作为一种取决于序列和混合内脏的问题,目的是最大限度地提高用户对虚拟世界存在率(FoP)的感觉,但需视访问点和用户头部显示的电耗限制而定。然而,由于用户缺乏准确的跟踪信息以及序列和混合内脏特性,这个问题很难直接解决。为了克服这一挑战,我们开发了一个平行的回声状态网络(ESN)学习方法,通过培训由AP单独收集的新鲜和历史跟踪样本来预测用户的信息。随着所了解的结果,我们建议对访问点和用户头部显示的电算值显示显示的准确性能变量进行深度学习(DR),因此,我们建议以深度的Snalal-alal comlial comal commal commaisal laction roup romas romas roup roma roma romas rodu rodu roma roma rodu rodu roma roma roma rol dal romod roma roma roma roma roma roma roma roma roma roma romad roma roma rocual rocution romod romod rocution rod rod rod rod rod rod rod romod romad romad romad rocuil rodal rod rod rod rod rod rod rod romad rodal romad rodal rod rod rod rod rod rod rod rod rodal rod rod rod romadal romad rod rod rod roma roma