The growth of 5G and edge computing has enabled the emergence of Internet of Vehicles. It supports different types of services with different resource and service requirements. However, limited resources at the edge, high mobility of vehicles, increasing demand, and dynamicity in service request-types have made service placement a challenging task. A typical static placement solution is not effective as it does not consider the traffic mobility and service dynamics. Handling dynamics in IoV for service placement is an important and challenging problem which is the primary focus of our work in this paper. We propose a Deep Reinforcement Learning-based Dynamic Service Placement (DRLD-SP) framework with the objective of minimizing the maximum edge resource usage and service delay while considering the vehicle's mobility, varying demand, and dynamics in the requests for different types of services. We use SUMO and MATLAB to carry out simulation experiments. The experimental results show that the proposed DRLD-SP approach is effective and outperforms other static and dynamic placement approaches.
翻译:5G和边缘计算的增长促成了车辆互联网的出现,它支持了具有不同资源和服务要求的不同类型的服务,然而,边缘地区资源有限,车辆流动性高,需求增加,服务请求类型动态变化,使得服务安置是一项具有挑战性的任务。典型的静态安置解决方案并不有效,因为它没有考虑到交通流动和服务动态。处理国际车辆协会的服务安置动态是一个重要而具有挑战性的问题,是我们本文工作的主要重点。我们提议了一个深强化学习型动态服务定位框架(DRLD-SP),目的是在考虑不同类型服务请求中的机动性、不同需求和动态的同时,尽量减少最大边缘资源的使用和服务延迟。我们利用SUMO和MATLAB进行模拟实验。实验结果显示,拟议的DLD-SP方法是有效的,比其他静态和动态定位方法要好。