End-to-end automatic speech recognition systems represent the state of the art, but they rely on thousands of hours of manually annotated speech for training, as well as heavyweight computation for inference. Of course, this impedes commercialization since most companies lack vast human and computational resources. In this paper, we explore training and deploying an ASR system in the label-scarce, compute-limited setting. To reduce human labor, we use a third-party ASR system as a weak supervision source, supplemented with labeling functions derived from implicit user feedback. To accelerate inference, we propose to route production-time queries across a pool of CUDA graphs of varying input lengths, the distribution of which best matches the traffic's. Compared to our third-party ASR, we achieve a relative improvement in word-error rate of 8% and a speedup of 600%. Our system, called SpeechNet, currently serves 12 million queries per day on our voice-enabled smart television. To our knowledge, this is the first time a large-scale, Wav2vec-based deployment has been described in the academic literature.
翻译:端到端自动语音识别系统代表了艺术的状态, 但是它们依赖数千小时人工附加说明的演讲来进行培训, 以及重量计算推算。 当然, 这阻碍商业化, 因为大多数公司缺乏巨大的人力和计算资源。 在本文中, 我们探索在标签偏差、 计算有限设置中培训和部署 ASR 系统。 为了减少人类劳动, 我们使用第三方ASR 系统作为薄弱的监督源, 并辅之以来自隐性用户反馈的标签功能 。 为了加速推断, 我们提议在 CUDA 图表库中通过不同输入长度的制作时间查询, 其分布最适合交通。 与我们的第三方 ASR 相比, 我们的LOVER 系统实现了8% 和 600 % 的相对改进。 我们的系统, 称为SpeealNet, 目前在我们的语音智能电视上每天提供1 200万个查询。 据我们所知, 这是第一次在学术文献中描述大规模基于Wav2VC的部署。