In this paper, we construct an efficient linear and fully decoupled finite difference scheme for wormhole propagation with heat transmission process on staggered grids, which only requires solving a sequence of linear elliptic equations at each time step. We first derive the positivity preserving properties for the discrete porosity and its difference quotient in time, and then obtain optimal error estimates for the velocity, pressure, concentration, porosity and temperature in different norms rigorously and carefully by establishing several auxiliary lemmas for the highly coupled nonlinear system. Numerical experiments in two- and three-dimensional cases are provided to verify our theoretical results and illustrate the capabilities of the constructed method.
翻译:暂无翻译