A $((k,n))$ quantum threshold secret sharing (QTS) scheme is a quantum cryptographic protocol for sharing a quantum secret among $n$ parties such that the secret can be recovered by any $k$ or more parties while $k-1$ or fewer parties have no information about the secret. Despite extensive research on these schemes, there has been very little study on optimizing the quantum communication cost during recovery. Recently, we initiated the study of communication efficient quantum threshold secret sharing (CE-QTS) schemes. These schemes reduce the communication complexity in QTS schemes by accessing $d\geq k$ parties for recovery; here $d$ is fixed ahead of encoding the secret. In contrast to the standard QTS schemes which require $k$ qudits for recovering each qudit in the secret, these schemes have a lower communication cost of $\frac{d}{d-k+1}$ for $d>k$. In this paper, we further develop the theory of communication efficient quantum threshold schemes. Here, we propose universal CE-QTS schemes which reduce the communication cost for all $d\geq k$ simultaneously. We provide a framework based on ramp quantum secret sharing to construct CE-QTS and universal CE-QTS schemes. We give another construction for universal CE-QTS schemes based on Staircase codes. We derived a lower bound on communication complexity and show that our constructions are optimal. Finally, an information theoretic model is developed to analyse CE-QTS schemes and the lower bound on communication complexity is proved again using this model.


翻译:A ((k,n)美元) 量子门槛秘密共享(QTS) 计划是一个量子加密协议,用于在美元方之间分享量子秘密,使任何美元方或以上方能够收回这一秘密,而美元方或更少方没有关于这一秘密的任何信息。尽管对这些计划进行了广泛的研究,但对于在回收过程中优化量子通信成本的研究却很少。最近,我们启动了对通信高效量子门槛共享(CE-QTS)计划的研究。这些计划通过访问美元方,降低QTS计划的通信复杂性;这里,美元方在编码秘密之前就固定了。与标准QTS计划相比,要求任何方或更多方在秘密中恢复每个夸脱(k)美元。尽管对这些计划进行了广泛的研究,但在回收过程中,对于优化量子共享(C-Geqq kTS) 计划(C-GTS) 计划(C-Q-QQQ) 的通信成本,我们进一步开发了通信效率临界值的理论。在这里,我们提出了降低通信成本的通用C-QQQ-KTS(C-Q-Q-Q-Q) 秘密共享计划,我们同时提供了另一个基于构建C-C-Q-Q-Q-Q-Q-C-Q-Q-Q-C-C-C-C-TS)的通用框架。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年10月12日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年3月23日
Arxiv
0+阅读 · 2021年3月22日
Arxiv
0+阅读 · 2021年3月22日
Arxiv
0+阅读 · 2021年3月20日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年10月12日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员