Communication over a random-parameter quantum channel when the decoder is required to reconstruct the parameter sequence is considered. We study scenarios that include either strictly-causal, causal, or non-causal channel side information (CSI) available at the encoder, and also when CSI is not available. This model can be viewed as a form of quantum metrology, and as the quantum counterpart of the classical rate-and-state channel with state estimation at the decoder. Regularized formulas for the capacity-distortion regions are derived. In the special case of measurement channels, single-letter characterizations are derived for the strictly causal and causal settings. Furthermore, in the more general case of entanglement-breaking channels, a single-letter characterization is derived when CSI is not available. As a consequence, we obtain regularized formulas for the capacity of random-parameter quantum channels with CSI, generalizing previous results by Boche et al. (2016) on classical-quantum channels. Bosonic dirty paper coding is introduced as a consequence, where we demonstrate that the optimum is not necessarily the MMSE estimator coefficient as in the classical setting.
翻译:在需要解码器重建参数序列时,考虑在随机参数量子信道上进行通信。我们研究的情景包括:在编码器上可获得的严格因果、因果或非因果通道侧信息(CSI),以及没有CSI时,这种模型可被视为量度计量学的一种形式,以及古典速率和状态频道的量对应物,并在解码器上进行国家估计。为能力扭曲区域制定了正规化的公式。在测量频道的特殊情况下,为纯因果和因果设置提供了单字母定性。此外,在更一般的纠结断渠道中,当没有CSI时,则会得出单字母定性。因此,我们获得了与CSI一起的随机度量子频道能力的正规化公式,概括了Boche 和 al. 之前在古典- 量子频道上的结果。因此引入了Bosonic 脏纸张编码作为结果,因为我们证明最佳的模型不一定是作为古典计量系数的MMS Esima 。