Adversarial attacks, e.g., adversarial perturbations of the input and adversarial samples, pose significant challenges to machine learning and deep learning techniques, including interactive recommendation systems. The latent embedding space of those techniques makes adversarial attacks difficult to detect at an early stage. Recent advance in causality shows that counterfactual can also be considered one of ways to generate the adversarial samples drawn from different distribution as the training samples. We propose to explore adversarial examples and attack agnostic detection on reinforcement learning-based interactive recommendation systems. We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors. Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data. Finally, we study the attack strength and frequency of adversarial examples and evaluate our model on standard datasets with multiple crafting methods. Our extensive experiments show that most adversarial attacks are effective, and both attack strength and attack frequency impact the attack performance. The strategically-timed attack achieves comparative attack performance with only 1/3 to 1/2 attack frequency. Besides, our black-box detector trained with one crafting method has the generalization ability over several other crafting methods.
翻译:反向攻击,例如输入和对抗抽样的对抗性扰动,给机器学习和深层次学习技术,包括交互式建议系统带来重大挑战。这些技术的潜在嵌入空间使对抗性攻击难以在早期发现。最近因果性的进展表明,反事实也可以被视为产生从不同分布中作为培训样本产生的对抗性攻击样品的一种方法。我们提议探索对抗性例子,并攻击强化学习互动建议系统的强化性学习性攻击性探测。我们首先通过在输入中增加扰动和干预偶发因素来制作不同类型的对抗性例子。然后,我们通过利用基于精心制作的数据的深层次基于学习的分类器来探测潜在攻击来增强建议系统。最后,我们研究对抗性攻击性例子的强度和频率,并以多种手工艺方法评价我们的标准数据集模型。我们的广泛实验表明,大多数对抗性攻击是有效的,攻击力和攻击频率都对攻击性性性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性的攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击