This paper tackles the problem of subject adaptive EEG-based visual recognition. Its goal is to accurately predict the categories of visual stimuli based on EEG signals with only a handful of samples for the target subject during training. The key challenge is how to appropriately transfer the knowledge obtained from abundant data of source subjects to the subject of interest. To this end, we introduce a novel method that allows for learning subject-independent representation by increasing the similarity of features sharing the same class but coming from different subjects. With the dedicated sampling principle, our model effectively captures the common knowledge shared across different subjects, thereby achieving promising performance for the target subject even under harsh problem settings with limited data. Specifically, on the EEG-ImageNet40 benchmark, our model records the top-1 / top-3 test accuracy of 72.6% / 91.6% when using only five EEG samples per class for the target subject. Our code is available at https://github.com/DeepBCI/Deep-BCI/tree/master/1_Intelligent_BCI/Inter_Subject_Contrastive_Learning_for_EEG.


翻译:本文解决了基于适应性EEG的视觉识别主题问题。 它的目标是精确预测基于EEG信号的视觉刺激类别,只对培训中的目标科目进行少量样本。 关键的挑战是如何将从源主题的大量数据中获得的知识适当转让给感兴趣的主题。 为此,我们引入了一种新的方法,通过增加同一类别共有但来自不同主题的特征的相似性,学习独立主题代表。 有了专门的抽样原则, 我们的模型有效地捕捉了不同主题之间共享的共同知识, 从而即使在有有限数据的严酷问题设置下, 也为目标对象实现有希望的业绩。 具体来说, 在 EEEG- ImaageNet40 基准中, 我们的模型记录了最高-1/最高-3测试精度72.6%/91.6%的测试精度, 当目标主题只使用5个EEG样本时, 我们的代码可以在 https://github.com/DeepBCI/Deep- BCI/tree/master/1_ Intellgent_ BCI/ Intligentral_ BCI/ BCI/ Intricentrent_ Conspect_Subject_ Contrastrat_LEG_ Lest_ EGEGEGEGEGEG.

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员