We propose a detailed analysis of the online-learning problem for Independent Cascade (IC) models under node-level feedback. These models have widespread applications in modern social networks. Existing works for IC models have only shed light on edge-level feedback models, where the agent knows the explicit outcome of every observed edge. Little is known about node-level feedback models, where only combined outcomes for sets of edges are observed; in other words, the realization of each edge is censored. This censored information, together with the nonlinear form of the aggregated influence probability, make both parameter estimation and algorithm design challenging. We establish the first confidence-region result under this setting. We also develop an online algorithm achieving a cumulative regret of $\mathcal{O}( \sqrt{T})$, matching the theoretical regret bound for IC models with edge-level feedback.


翻译:我们提议在节点反馈下详细分析独立卡塞德(IC)模型的在线学习问题。 这些模型在现代社交网络中有着广泛的应用。 IC模型的现有工作只揭示了边缘一级反馈模型, 代理方知道每个观察到的边缘的明显结果。 我们对节点反馈模型知之甚少, 只有一组边缘的合并结果才被观察到; 换句话说, 每种边缘的实现都受到审查。 这种受审查的信息, 连同非线性的影响概率形式, 使得参数估计和算法设计都具有挑战性。 我们在这种背景下建立了第一个信任区域结果。 我们还开发了一种在线算法, 累积了对 $\ mathcal{O} (\ sqrt{T}) 的遗憾, 将IC模型的理论遗憾与边缘反馈相匹配。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
29+阅读 · 2021年8月2日
专知会员服务
85+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
23+阅读 · 2020年1月28日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
235+阅读 · 2019年10月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月27日
Arxiv
0+阅读 · 2021年10月27日
Arxiv
0+阅读 · 2021年10月26日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月23日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年8月2日
专知会员服务
85+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
23+阅读 · 2020年1月28日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
235+阅读 · 2019年10月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员