We propose a detailed analysis of the online-learning problem for Independent Cascade (IC) models under node-level feedback. These models have widespread applications in modern social networks. Existing works for IC models have only shed light on edge-level feedback models, where the agent knows the explicit outcome of every observed edge. Little is known about node-level feedback models, where only combined outcomes for sets of edges are observed; in other words, the realization of each edge is censored. This censored information, together with the nonlinear form of the aggregated influence probability, make both parameter estimation and algorithm design challenging. We establish the first confidence-region result under this setting. We also develop an online algorithm achieving a cumulative regret of $\mathcal{O}( \sqrt{T})$, matching the theoretical regret bound for IC models with edge-level feedback.
翻译:我们提议在节点反馈下详细分析独立卡塞德(IC)模型的在线学习问题。 这些模型在现代社交网络中有着广泛的应用。 IC模型的现有工作只揭示了边缘一级反馈模型, 代理方知道每个观察到的边缘的明显结果。 我们对节点反馈模型知之甚少, 只有一组边缘的合并结果才被观察到; 换句话说, 每种边缘的实现都受到审查。 这种受审查的信息, 连同非线性的影响概率形式, 使得参数估计和算法设计都具有挑战性。 我们在这种背景下建立了第一个信任区域结果。 我们还开发了一种在线算法, 累积了对 $\ mathcal{O} (\ sqrt{T}) 的遗憾, 将IC模型的理论遗憾与边缘反馈相匹配。