Affective Analysis is not a single task, and the valence-arousal value, expression class and action unit can be predicted at the same time. Previous researches failed to take them as a whole task or ignore the entanglement and hierarchical relation of this three facial attributes. We propose a novel model named feature pyramid networks for multi-task affect analysis. The hierarchical features are extracted to predict three labels and we apply teacher-student training strategy to learn from pretrained single-task models. Extensive experiment results demonstrate the proposed model outperform other models.This is a submission to The 2nd Workshop and Competition on Affective Behavior Analysis in-the-wild (ABAW). The code and model are available for research purposes at https://github.com/ryanhe312/ABAW2-FPNMAA.
翻译:情感分析并非一项单一的任务,同时可以预测价值-激励值、表达群和动作单位。以前的研究未能将它们作为一个整体进行,或者忽略了这三种面部属性的纠缠和等级关系。我们提出了一个名为特征金字塔网络的新模型,供多任务影响分析使用。分级特征用于预测三个标签,我们运用师生培训战略从预先训练的单一任务模型中学习。广泛的实验结果展示了拟议的模型优于其他模型。这是提交第二届讲习班和情感行为分析竞赛(ABAW)的文件。代码和模型可在https://github.com/ryanhe312/ABAW2-FPNMA上用于研究目的。