Here we study the semantic search and retrieval problem in biomedical digital libraries. First, we introduce MedGraph, a knowledge graph embedding-based method that provides semantic relevance retrieval and ranking for the biomedical literature indexed in PubMed. Second, we evaluate our method using PubMed's Best Match algorithm. Moreover, we compare our method MedGraph to a traditional TFIDF based algorithm. We use a dataset extracted from PubMed, including 30 million articles' metadata such as abstracts, author information, citation information, and extracted biological entity mentions. We do that by pulling a subset of the dataset to evaluate MedGraph using predefined queries with ground truth ranked results. To our knowledge, this technique has not been explored before in biomedical information retrieval. In addition, our results provide evidence that semantic approaches to search and relevance in biomedical digital libraries that rely on knowledge graph modeling offer better search relevance results when compared with traditional approaches in terms of objective metrics.


翻译:我们在这里研究生物医学数字图书馆的语义搜索和检索问题。 首先,我们介绍MedGraph, 这是一种基于知识图嵌入的方法,它为PubMed中生物医学文献索引提供语义相关性检索和排名。 其次,我们用PubMed的最佳匹配算法评估我们的方法。 此外,我们将我们的方法MedGraph与传统的TFIDF算法进行比较。我们使用从PubMed中提取的数据集,包括3 000万个文章的元数据,如摘要、作者信息、引言信息和提取的生物实体等。我们这样做的方式是利用一组数据集来评估MedGraph,使用预先定义的查询和地面真理排名结果。 据我们所知,这种技术在生物医学信息检索中以前没有被探索过。 此外,我们的结果提供了证据,在依靠知识图表模型建模的生物医学数字图书馆中搜索和相关性的语义方法,与客观指标的传统方法相比,提供了更好的搜索相关结果。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
IJCAI2020信息抽取相关论文合集
AINLP
6+阅读 · 2020年6月16日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Arxiv
102+阅读 · 2020年3月4日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
IJCAI2020信息抽取相关论文合集
AINLP
6+阅读 · 2020年6月16日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Top
微信扫码咨询专知VIP会员