Although there exist several libraries for deep learning on graphs, they are aiming at implementing basic operations for graph deep learning. In the research community, implementing and benchmarking various advanced tasks are still painful and time-consuming with existing libraries. To facilitate graph deep learning research, we introduce DIG: Dive into Graphs, a turnkey library that provides a unified testbed for higher level, research-oriented graph deep learning tasks. Currently, we consider graph generation, self-supervised learning on graphs, explainability of graph neural networks, and deep learning on 3D graphs. For each direction, we provide unified implementations of data interfaces, common algorithms, and evaluation metrics. Altogether, DIG is an extensible, open-source, and turnkey library for researchers to develop new methods and effortlessly compare with common baselines using widely used datasets and evaluation metrics. Source code is available at https://github.com/divelab/DIG.
翻译:虽然有一些图书馆用于在图表上进行深层学习,但它们的目标是为图表深层学习实施基本操作。在研究界,各种先进任务的执行和基准制定仍然令现有图书馆痛苦而费时。为了便利深层学习研究,我们引入了DIG:Dive in Graps。DIG:Dive in Graps,这是一个统包图书馆,为更高层次提供统一的测试台,面向研究的图形深层学习任务。目前,我们考虑的是图形生成、在图表上自我监督的学习、图形神经网络的解释性以及3D图上的深层学习。对于每一个方向,我们提供统一的数据界面、共同算法和评估指标的实施。总的来说,DIG是一个可供研究人员利用广泛使用的数据集和评价指标开发新方法和与共同基线进行不懈比较的可扩展、开源和统包图书馆。源代码见https://github.com/divelab/DIG。