This paper proposes a simple yet efficient high-altitude wind nowcasting pipeline. It processes efficiently a vast amount of live data recorded by airplanes over the whole airspace and reconstructs the wind field with good accuracy. It creates a unique context for each point in the dataset and then extrapolates from it. As creating such context is computationally intensive, this paper proposes a novel algorithm that reduces the time and memory cost by efficiently fetching nearest neighbors in a data set whose elements are organized along smooth trajectories that can be approximated with piece-wise linear structures. We introduce an efficient and exact strategy implemented through algebraic tensorial operations, which is well-suited to modern GPU-based computing infrastructure. This method employs a scalable Euclidean metric and allows masking data points along one dimension. When applied, this method is more efficient than plain Euclidean k-NN and other well-known data selection methods such as KDTrees and provides a several-fold speedup. We provide an implementation in PyTorch and a novel data set to allow the replication of empirical results.


翻译:本文提出一个简单而高效的高空风即时投射管道。 它高效地处理飞机在整个空域上记录的大量现场数据, 并精准地重建风场。 它为数据集中的每个点创造独特的背景, 然后从中外推。 由于创建这种背景是计算密集的, 本文提出一种新的算法, 通过在数据集中高效率地获取最接近的邻居的时间和记忆成本, 该数据集的元素可以与平滑的轨迹组织起来, 可以与小片线性结构相近。 我们引入了高效和精确的战略, 通过代数阵列阵列操作实施, 这对于现代基于 GPU 的计算基础设施非常合适。 这种方法使用可缩放的 Euclidean 参数, 并允许将数据点隐藏在一个方面。 当应用时, 这种方法比普通的 Euclidean k- NNN 和其他著名的数据选择方法( 如 KDTrees) 更有效率, 并提供几倍的速度。 我们在 PyTorrch 和一套新数据集中实施, 以便复制经验结果。

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
124+阅读 · 2020年8月2日
专知会员服务
109+阅读 · 2020年3月12日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】手把手深度学习模型部署指南
机器学习研究会
5+阅读 · 2018年1月23日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自动特征工程开源框架
机器学习研究会
17+阅读 · 2017年11月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月18日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】手把手深度学习模型部署指南
机器学习研究会
5+阅读 · 2018年1月23日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自动特征工程开源框架
机器学习研究会
17+阅读 · 2017年11月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员