Numerical weather prediction models rely on parameterizations for subgrid-scale processes, e.g., for cloud microphysics. These parameterizations are a well-known source of uncertainty in weather forecasts that can be quantified via algorithmic differentiation, which computes the sensitivities of prognostic variables to changes in model parameters. It is particularly interesting to use sensitivities to analyze the validity of physical assumptions on which microphysical parameterizations in the numerical model source code are based. In this article, we consider the use case of strongly ascending trajectories, so-called warm conveyor belt trajectories, known to have a significant impact on intense surface precipitation rates in extratropical cyclones. We present visual analytics solutions to analyze interactively the sensitivities of a selected prognostic variable, i.e. rain mass density, to multiple model parameters along such trajectories. We propose a visual interface that enables to a) compare the values of multiple sensitivities at a single time step on multiple trajectories, b) assess the spatio-temporal relationships between sensitivities and the shape and location of trajectories, and c) a comparative analysis of the temporal development of sensitivities along multiple trajectories. We demonstrate how our approach enables atmospheric scientists to interactively analyze the uncertainty in the microphysical parameterizations, and along the trajectories, with respect to a selected prognostic variable. We apply our approach to the analysis of convective trajectories within the extratropical cyclone "Vladiana", which occurred between 22-25 September 2016 over the North Atlantic.
翻译:数字天气预测模型依赖于亚电磁尺度过程的参数化,例如云微物理学。这些参数化是天气预报中众所周知的不确定性的来源,可以通过算法差异来量化。算法差异可以计算预测变量对模型参数变化的敏感度。特别有趣的是,使用敏感度来分析数值模型源代码中微物理参数化所基于的物理假设的有效性。在本篇文章中,我们考虑使用强烈上升轨迹的物理假设,即所谓的热传送带轨道。已知对极端热带气旋中地表降水率的强烈影响巨大的天气预测。我们提出视觉分析解决方案,以交互分析选定预测变量(即降雨质量密度)的敏感度和模型参数在这种轨迹中的变化。我们提议了一个视觉界面,以便能够在多轨轨迹上的单个时间步骤上比较多重敏感度值,即所谓的温暖传送带轨道微轨迹微轨迹微轨迹微轨迹微轨迹微轨迹,我们所知道的轨迹-时间变化矩阵间关系,已知对极端的地谱系关系具有显著影响,在非热带气态性气态性气态性旋风变变变变变变变变变变变变变变变变分析中,“我们之间和变变变变变变变变变变变变变变变变变变变变变变变的变变变变变变变分析法分析法分析法变法分析法分析法分析方法的变法变法和变法变法和变法变法变法变法变法变法变法变法变法变法变法变法变法变法变法变法变法变法和变法变法变法变法变法变法变法变法变法变法变法变法变法变法变法变法变法和变法变法和变法变法变法变法变法变法变法变法变法变法变法变法变法变法变法和变法变法变法变法变法变法变法变法变法变法变法变法变法变法变法变法变法和变法变法变法变法变法变法变法变法变法变法和变法变法变法变法变法变法变法变法和变法变法变法变法变法变法变