In this paper, we propose a unified approach for solving structure-preserving eigenvalue embedding problem (SEEP) for quadratic regular matrix polynomials with symmetry structures. First, we determine perturbations of a quadratic matrix polynomial, unstructured or structured, such that the perturbed polynomials reproduce a desired invariant pair while maintaining the invariance of another invariant pair of the unperturbed polynomial. If the latter is unknown, it is referred to as no spillover perturbation. Then we use these results for solving the SEEP for structured quadratic matrix polynomials that include: symmetric, Hermitian, $\star$-even and $\star$-odd quadratic matrix polynomials. Finally, we show that the obtained analytical expressions of perturbations can realize existing results for structured polynomials that arise in real-world applications, as special cases. The obtained results are supported with numerical examples.
翻译:在本文中,我们提出一种统一的方法来解决结构保护的双值嵌入问题(SEEP), 以解决带有对称结构的二次基质常规基质多元复合体的问题。 首先, 我们确定四边基质多面体、 无结构或结构结构的扰动, 以便交错多面体复制一个理想的异差配对, 同时保持未扰动多面体的另一对无差异的多面体的异差。 如果后者未知, 则称为无溢出性。 然后我们用这些结果来解决结构化的二次基质矩阵多面体的SEEP, 包括: 对称、 Hermitian、 $- esta- even 和 $- ztar- $- od- od 夸度基质矩阵多元多面体。 最后, 我们表明, 所获取的扰动分析表达方式可以实现在现实应用中出现的结构多元体的现有结果, 作为特殊案例。 所获得的结果得到了数字示例的支持。