We propose a framework for solving control synthesis problems for multi-agent networked systems required to satisfy spatio-temporal specifications. We use Spatio-Temporal Reach and Escape Logic (STREL) as a specification language. For this logic, we define smooth quantitative semantics, which captures the degree of satisfaction of a formula by a multi-agent team. We use the novel quantitative semantics to map control synthesis problems with STREL specifications to optimization problems and propose a combination of heuristic and gradient-based methods to solve such problems. As this method might not meet the requirements of a real-time implementation, we develop a machine learning technique that uses the results of the off-line optimizations to train a neural network that gives the control inputs at current states. We illustrate the effectiveness of the proposed framework by applying it to a model of a robotic team required to satisfy a spatial-temporal specification under communication constraints.
翻译:我们提出一个框架,以解决满足时空标准要求所需的多试剂网络系统控制合成问题。我们用Spatio-Teoporal Aach and Escape Locic (STREL) 作为一种规格语言。我们根据这一逻辑,定义了平滑的定量语义,它能捕捉一个多试剂小组对公式的满意程度。我们使用新型定量语义来绘制与STREL 规格有关的控制合成问题地图,以优化问题,并提出混合使用超时和梯度方法来解决这类问题。由于这种方法可能无法满足实时实施的要求,我们开发了一种机器学习技术,利用离线优化的结果来培训神经网络,为目前各州提供控制投入。我们通过将拟议框架应用于满足通信限制下的空间时标要求的机器人小组模型,来说明拟议框架的有效性。