Software tools for generating digital sound often present users with high-dimensional, parametric interfaces, that may not facilitate exploration of diverse sound designs. In this paper, we propose to investigate artificial agents using deep reinforcement learning to explore parameter spaces in partnership with users for sound design. We describe a series of user-centred studies to probe the creative benefits of these agents and adapting their design to exploration. Preliminary studies observing users' exploration strategies with parametric interfaces and testing different agent exploration behaviours led to the design of a fully-functioning prototype, called Co-Explorer, that we evaluated in a workshop with professional sound designers. We found that the Co-Explorer enables a novel creative workflow centred on human-machine partnership, which has been positively received by practitioners. We also highlight varied user exploration behaviors throughout partnering with our system. Finally, we frame design guidelines for enabling such co-exploration workflow in creative digital applications.
翻译:生成数字声音的软件工具往往向用户提供可能无助于探索各种声音设计的高维、参数界面。在本文中,我们提议对人造代理人进行调查,利用深度强化学习与用户合作探索参数空间,以便进行健全的设计。我们描述一系列以用户为中心的研究,以探究这些代理人的创造性好处,并调整其设计以进行探索。初步研究,用参数界面观察用户的勘探战略,测试不同的物剂勘探行为,导致设计一个功能完备的原型,称为共同探索者,我们在一个与专业声音设计师的研讨会上对其进行了评估。我们发现,共同探索者使以人类机器伙伴关系为核心的新型创造性工作流程得以实现,并得到了从业人员的积极接受。我们还强调了在整个与我们系统合作过程中的各种用户探索行为。最后,我们为在创造性数字应用中促成这种共同探索工作流程制定了设计准则。