A concise and measurable set of FAIR (Findable, Accessible, Interoperable and Reusable) principles for scientific data is transforming the state-of-practice for data management and stewardship, supporting and enabling discovery and innovation. Learning from this initiative, and acknowledging the impact of artificial intelligence (AI) in the practice of science and engineering, we introduce a set of practical, concise, and measurable FAIR principles for AI models. We showcase how to create and share FAIR data and AI models within a unified computational framework combining the following elements: the Advanced Photon Source at Argonne National Laboratory, the Materials Data Facility, the Data and Learning Hub for Science, and funcX, and the Argonne Leadership Computing Facility (ALCF), in particular the ThetaGPU supercomputer and the SambaNova DataScale system at the ALCF AI Testbed. We describe how this domain-agnostic computational framework may be harnessed to enable autonomous AI-driven discovery.
翻译:一套简明和可衡量的科学数据FAIR(可实现、可获取、可互操作和可再使用)原则正在改变数据管理和管理、支持和促成发现和创新的最新做法。从这一倡议中学习,并承认人工智能(AI)在科学和工程实践中的影响,我们为AI模型推出一套实用、简明和可衡量的FAIR原则。我们展示了如何在一个统一的计算框架内创建和分享FAIR数据和AI模型,其中综合了以下要素:阿贡国家实验室的高级光源源、材料数据设施、科学和funcX数据和学习中心以及Argonne领导电子计算设施,特别是ThetaGPU超级计算机和ALCF AI测试床的SambaNova数据系统。我们介绍了如何利用这一域无名计算框架使AI驱动的自动发现成为可能。