Algebraic multigrid (AMG) is one of the most widely used solution techniques for linear systems of equations arising from discretized partial differential equations. The popularity of AMG stems from its potential to solve linear systems in almost linear time, that is with an O(n) complexity, where n is the problem size. This capability is crucial at the present, where the increasing availability of massive HPC platforms pushes for the solution of very large problems. The key for a rapidly converging AMG method is a good interplay between the smoother and the coarse-grid correction, which in turn requires the use of an effective prolongation. From a theoretical viewpoint, the prolongation must accurately represent near kernel components and, at the same time, be bounded in the energy norm. For challenging problems, however, ensuring both these requirements is not easy and is exactly the goal of this work. We propose a constrained minimization procedure aimed at reducing prolongation energy while preserving the near kernel components in the span of interpolation. The proposed algorithm is based on previous energy minimization approaches utilizing a preconditioned restricted conjugate gradients method, but has new features and a specific focus on parallel performance and implementation. It is shown that the resulting solver, when used for large real-world problems from various application fields, exhibits excellent convergence rates and scalability and outperforms at least some more traditional AMG approaches.


翻译:电离部分差异方程式产生的线性方程式系统最广泛使用的解决方案技术之一。AMG的受欢迎度来自其在几乎线性的时间(即O(n)复杂度为问题大小的O(n)复杂度)中解决线性系统的潜力。目前,这种能力至关重要,大规模HPC平台的日益普及有助于解决非常大的问题。快速趋同AMG方法的关键在于光滑和粗格电网校正之间的良好互动,这反过来需要使用有效的延长。从理论角度看,延长必须准确地代表近内核元件,同时受能源规范的约束。但是,对于挑战性的问题,确保这两种要求并非易事,而且这正是这项工作的目标。我们建议采用限制最小化程序,以减少延长的能源,同时在内核范围内保留近内核的部件。提议的算法基于以往的能源最小化方法,使用一种有先决条件的限制性固化梯度方法,但从新的特征和具体性方法上看,在大规模趋同率上,在采用这种方法时,以新的特点和最优性的方法,在平行和最优的实地应用方面,在采用这种方法时,以最优性的方式,在进行平行和最优的实地的模范式方法。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月30日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员