Image-to-image translation (I2I) aims at transferring the content representation from an input domain to an output one, bouncing along different target domains. Recent I2I generative models, which gain outstanding results in this task, comprise a set of diverse deep networks each with tens of million parameters. Moreover, images are usually three-dimensional being composed of RGB channels and common neural models do not take dimensions correlation into account, losing beneficial information. In this paper, we propose to leverage hypercomplex algebra properties to define lightweight I2I generative models capable of preserving pre-existing relations among image dimensions, thus exploiting additional input information. On manifold I2I benchmarks, we show how the proposed Quaternion StarGANv2 and parameterized hypercomplex StarGANv2 (PHStarGANv2) reduce parameters and storage memory amount while ensuring high domain translation performance and good image quality as measured by FID and LPIPS scores. Full code is available at: https://github.com/ispamm/HI2I.
翻译:图像到图像翻译 (I2I) 的目的是将内容表示从输入域转换为输出域, 沿着不同的目标域滚动。 最近I2I 基因化模型在这项任务中取得了突出的成果, 由一组各有数千万参数的不同的深层网络组成。 此外, 图像通常由三维组成, 由 RGB 频道和普通神经模型组成, 不考虑维度相关性, 失去有益的信息 。 在本文中, 我们提议利用超复合代数属性来定义轻量的 I2I 基因化模型, 能够维护图像维度之间的原有关系, 从而利用额外的输入信息。 在多个 I2I 基准上, 我们展示了拟议的 Quaterrion StarGANv2 和参数化的超复合StarGANv2 (PHStarGANv2) 如何降低参数和存储存储存储量,同时确保高域翻译性能和良好的图像质量, 按FID和 LPPS 分数衡量。 我们的完整代码可在 https://github.com/ispamm/ HI2IPS。